Suppose $p=300,000 \mathrm{psi}$ as determined from Equation (44) for $\alpha_{r}=0.5$ and $\sigma_{1}=300,000$ psi. Then from Figure $48, \mathrm{~K}$ must be 9.0 for $\mathrm{k}_{1}=1.75$ and $\mathrm{N}=5$ if $\sigma=210,000$. Thus, the multiring cylinder must be quite large in size to support maximum repeated pressures.

The interferences Δ_{n} and residual pressures q_{n} have yet to be determined for the multiring container. Since the liner and the outer rings are assumed to be made from two different materials, thermal expansions must be included in the interference calculations. It is assumed that no thermal gradients exist; all components reach the same temperatures uniformly. Therefore, the interference required between the liner and the second cylinder is expressed as

$$
\begin{equation*}
\frac{\Delta_{1}}{r_{1}}=-\frac{u_{1}\left(r_{1}\right)}{r_{1}}+\frac{u_{2}\left(r_{1}\right)}{r_{1}}-\alpha_{1} \Delta T+\alpha_{2} \Delta T \tag{49}
\end{equation*}
$$

where
$\Delta_{1}=$ manufactured interference
$u_{l}(r)=$ radial deformation of liner at r_{1} due to residual
pressure q_{1} at r_{1}
$u_{2}\left(r_{1}\right)=$ radial deformation of Cylinder 2 at r_{1} due to residual
pressures q_{1} at r_{1} and q_{2} at r_{2}
$\alpha=$ coefficient of thermal expansion at temperature
$\Delta T=$ temperature change from room temperature.
The interferences Δ_{n} required between the outer cylinders is again given by Equation (33) for $n \geqq 2$. The residual pressures q_{n} needed in calculating the Δ_{n} are found from Equation (32) for p_{n} given by Equations (46) and (38). In the calculation of the u_{n} from Equation (14a), the values of the moduli of elasticity, En at temperature should be used.

The container designed for use at temperature will have residual pressures $\mathrm{q}_{\mathrm{n}}{ }^{*}$ at room temperature different from the q_{n} necessary at temperature. The $\mathrm{q}_{\mathrm{n}}{ }^{*}$ are found as follows: the $u_{n}{ }^{*}$ are first expressed in terms of $q_{n}{ }^{*}$ from Equation (14 a) using the values of E_{n} at room temperature, the Δ_{n} are expressed in terms of the $u_{n}{ }^{*}$ from Equations (49) and (33) for $\Delta T=0$. This procedure gives the following system of equations in the q_{n} *:

$$
\mathrm{A}_{11} \mathrm{q}_{1} *+\mathrm{A}_{12 \mathrm{q}_{2} *}=\mathrm{E}_{2} \frac{\Delta_{1}}{\mathrm{r}_{1}}
$$

$$
A_{n n-1} q_{n-1} *+A_{n n} q_{n}^{*}+A_{n n+1} q_{n+1} *=E_{n} \frac{\Delta_{n}}{r_{n}}, n=2,3, \ldots, N-1
$$

(50a, b, .)
where

$$
A_{11}=\frac{k_{2}^{2}+1}{k_{2}^{2}-1}+\nu+\frac{E_{2}}{E_{1}}\left(\frac{k_{1}^{2}+1}{k_{1}^{2}-1}-\nu\right), \quad A_{n n-1}=\frac{-2}{k_{n}^{2}-1}, \quad A_{12}=\frac{-2 k_{2}^{2}}{k_{2}^{2}-1}
$$

$$
A_{n n}=\frac{k_{n}^{2}+1}{k_{n}^{2}-1}+\frac{k_{n+1}^{2}+1}{k_{n+1}^{2}-1}=2 \frac{k_{n}^{2}+1}{k_{n}^{2}-1} \quad A_{n n+1}=\frac{-2 k_{n+1}^{2}}{k_{n+1}^{2}-1}=-2 \frac{k_{n}^{2}}{k_{n}^{2}-1}
$$

and where Δ_{1} and the $\Delta_{n}, \mathrm{n} \geqq 2$ have been previously calculated for $\Delta \mathrm{T} \neq 0$. There are $N-1$ linear equations ($50 a, b, \ldots$) in $N-1$ unknowns $q_{n}, n=1,2, \ldots, N-1\left(Q_{N}=0\right)$. These are easily solved by matrix solution on the computer.

Having calculated the residual pressures $\mathrm{q}_{\mathrm{n}} *$ at room temperature the residual stresses can be calculated from Equations (13a-c). These residual stresses can then be checked in order to ensure that they are within tolerated bounds. Examples of such calculations are described later when specific designs are considered. Next, the ringsegment container is considered.

Ring-Segment Container

A ring-segment container has been shown in Figure 39b. For this design, the equilibrium requirement, Equation (21), relates p_{1} and p_{2}. Under shrink-fit it is assumed that the segments just barely contact each other, i.e., the segments carry no hoop stress. (If the segments were in strong contact with each other, they would act like a complete ring, i.e., they would carry compressive hoop stress, and the distinction between a ring-segment container and a multiring container would be lost.) Thus, the same equilibrium requirement applies to the residual pressures q_{1} and q_{2}. This requirement is

$$
\begin{equation*}
p=p_{1} / k_{2}, \quad q=q_{1} / k_{2} \tag{5la,b}
\end{equation*}
$$

In order to determine the pressures p_{1} and q_{1} the following radial deformation equation is formulated:

$$
\begin{align*}
u_{2}\left(r_{2}\right)-u_{2}\left(r_{1}\right)+\Delta_{12}+\alpha_{2} \Delta T\left(r_{2}-r_{1}\right) & =u_{3}\left(r_{2}\right)-u_{1}\left(r_{1}\right) \tag{52}\\
& +\alpha_{3} \Delta T r_{2}-\alpha_{1} \Delta T r_{1}
\end{align*}
$$

where

$$
\begin{aligned}
& \Delta_{12}=\text { the manufactured interference defined as the amount }\left(r_{2}-r_{1}\right) \text { of } \\
& \text { the segments exceeds }\left(r_{2}-r_{1}\right) \text { of the cylinders } \\
& u_{n}\left(r_{m}\right)=\text { the radial deformation of component } n \text { at } r_{m} \text { due to pressure } \\
& p_{n} \text { or } q_{n} \text { at } r_{n} \text { and } p_{n-1} \text { or } q_{n-1} \text { at } r_{n-1}
\end{aligned}
$$

$\alpha_{n}=$ thermal coefficient of expansion of component n
$\Delta T=$ temperature change from room temperature.

